

Exam Practice Guide

Unit 3 Chemistry

Examination Questions

Key Features:

- ✓ 80 original examination style questions on all examinable topics.
- ✓ Full solutions and a marking guide to all questions.
- Separated into key topic areas within each Area of Study, enabling students to master one topic at a time.
- ✓ Written by VCE assessors who mark the real examinations.
- ✓ Excellent resource for examination practice.

Helping VCE students be the best they can be.

Copyright © TSSM 2017

TSSM ACN 099 422 670 ABN 54 099 422 670 A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 F: 03 97084354 W: tssm.com.au E: info@tssm.com.au

CONTENTS

AREA OF STUDY 1: What are the options for energy production?	Page
Topic 1 – Obtaining energy from fuels	4
Topic 2 – Fuel choices	7
Topic 3 – Galvanic cells as a source of energy	12
Topic 4 – Fuel cells as a source of energy	17
AREA OF STUDY 2: How can the yield of a chemical product be optimised?	
Topic 1 – Rate of chemical reactions	21
Topic 2 – Extent of chemical reactions	25
Topic 3 – Production of chemicals by electrolysis	31
Topic 4 – Rechargeable batteries	36
SOLUTIONS	40

AREA OF STUDY 1: What are the options for energy production?

Topic 1 – Obtaining energy from fuels

Question 1

"Fossil fuels" refers to:

- A. coal
- B. oil
- **C.** natural gas
- **D.** All of the above

Question 2

Photosynthesis can be represented by the equation: $6CO_2(g) + 6H_2O(I) \rightarrow C_6H_{12}O_6(s) + 6O_2(g)$

The energy change when 360 g of glucose is burnt will be:

- **A.** the absorption of 2803 kJ of energy.
- **B.** the release of 5606 kJ of energy.
- **C.** the absorption of 5606 kJ of energy.
- **D.** the release of 5606 J of energy.

Question 3

The equation for the combustion of hydrogen is: 2H₂(g) + O₂(g) \rightarrow 2H₂O(g) $\Delta H = -484$ kJ mol⁻¹

The energy released when 2.40 g of hydrogen reacts is:

- **A.** 145 J
- **B.** 290 J
- **C.** 145 kJ
- **D.** 290 kJ

Question 4

Respiration is a highly exothermic reaction occurring in body cells. $C_6H_{12}O_6(aq) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g) \Delta H = -2803 \text{ kJ mol}^{-1}$

The basal metabolic rate (BMR) for an average adult is 4301 kJ/day. Using this number what is the minimum mass of glucose required per day to provide the basic energy requirements for our bodies.

- **A.** 46 g
- **B.** 117 g
- **C.** 276 g
- **D.** 1656 g

ΔH = +2803 kJ mol⁻¹

Question 5

The equation for the combustion of hydrogen is: 2H₂(g) + O₂(g) \rightarrow 2H₂O(g) Δ H = -484 kJ mol⁻¹

The value of ΔH provided here:

- A. should be the same as that given in the VCAA chemistry data book
- **B.** will be double that of the data book
- **C.** will be half that of the data book
- D. will be different to that of the data book, as the phases of the chemicals are different

Question 6

The fuel that produces the greatest amount of energy per gram during combustion is:

- A. ethanol
- B. propane
- C. octane
- D. hydrogen

Question 7

Given the following two equations:

 $2H_2 + O_2 \rightarrow 2H_2O; \Delta H = -572 \text{ kJmol}$

 $H_2 + O_2 \rightarrow H_2O_2$; $\Delta H = -188 \text{ kJmol}$

What is the ΔH for the following reaction: 2H₂O₂ \rightarrow 2H₂O + O₂

- **A.** 384 kJmol⁻¹
- **B.** 196 kJmol⁻¹
- **C.** -948 kJmol^{-1}
- **D.** +376 kJmol⁻¹

Question 8

a. Octane (C₈H₁₈) is a fossil fuel derived from the fractional distillation of crude oil. Octane is a component of petrol and is combusted in car engines. Write the combustion reaction for octane.